Enter a problem...
Finite Math Examples
P=(√22,√22)P=(√22,√22)
Step 1
Apply the direction angle formula θ=arctan(ba)θ=arctan(ba) where a=√22a=√22 and b=√22b=√22.
θ=arctan(√22√22)θ=arctan⎛⎜
⎜
⎜⎝√22√22⎞⎟
⎟
⎟⎠
Step 2
Step 2.1
Remove parentheses.
θ=arctan(√22√22)θ=arctan⎛⎜
⎜
⎜⎝√22√22⎞⎟
⎟
⎟⎠
Step 2.2
Simplify arctan(√22√22)arctan⎛⎜
⎜
⎜⎝√22√22⎞⎟
⎟
⎟⎠.
Step 2.2.1
Multiply the numerator by the reciprocal of the denominator.
θ=arctan(√22√2⋅12)θ=arctan⎛⎜⎝√22√2⋅12⎞⎟⎠
Step 2.2.2
Multiply the numerator by the reciprocal of the denominator.
θ=arctan(√22⋅1√212)θ=arctan(√22⋅1√212)
Step 2.2.3
Cancel the common factor of √2√2.
Step 2.2.3.1
Cancel the common factor.
θ=arctan(√22⋅1√212)
Step 2.2.3.2
Rewrite the expression.
θ=arctan(12⋅12)
θ=arctan(12⋅12)
Step 2.2.4
Multiply 12⋅12.
Step 2.2.4.1
Multiply 12 by 12.
θ=arctan(12⋅2)
Step 2.2.4.2
Multiply 2 by 2.
θ=arctan(14)
θ=arctan(14)
Step 2.2.5
Evaluate arctan(14).
θ=14.03624346
θ=14.03624346
θ=14.03624346