Finite Math Examples

Find the Direction Angle of the Vector P=(( square root of 2)/2,( square root of 2)/2)
P=(22,22)P=(22,22)
Step 1
Apply the direction angle formula θ=arctan(ba)θ=arctan(ba) where a=22a=22 and b=22b=22.
θ=arctan(2222)θ=arctan⎜ ⎜ ⎜2222⎟ ⎟ ⎟
Step 2
Solve for θθ.
Tap for more steps...
Step 2.1
Remove parentheses.
θ=arctan(2222)θ=arctan⎜ ⎜ ⎜2222⎟ ⎟ ⎟
Step 2.2
Simplify arctan(2222)arctan⎜ ⎜ ⎜2222⎟ ⎟ ⎟.
Tap for more steps...
Step 2.2.1
Multiply the numerator by the reciprocal of the denominator.
θ=arctan(22212)θ=arctan22212
Step 2.2.2
Multiply the numerator by the reciprocal of the denominator.
θ=arctan(221212)θ=arctan(221212)
Step 2.2.3
Cancel the common factor of 22.
Tap for more steps...
Step 2.2.3.1
Cancel the common factor.
θ=arctan(221212)
Step 2.2.3.2
Rewrite the expression.
θ=arctan(1212)
θ=arctan(1212)
Step 2.2.4
Multiply 1212.
Tap for more steps...
Step 2.2.4.1
Multiply 12 by 12.
θ=arctan(122)
Step 2.2.4.2
Multiply 2 by 2.
θ=arctan(14)
θ=arctan(14)
Step 2.2.5
Evaluate arctan(14).
θ=14.03624346
θ=14.03624346
θ=14.03624346
 [x2  12  π  xdx ]